随着功率器件特别是第三代半导体的崛起与应用,半导体器件逐渐向大功率、小型化、集成化和多功能等方向发展,对封装基板性能也提出了更高要求。陶瓷基板,或称陶瓷电路板,具有热导率高、耐热性好、热膨胀系数低、机械强度高、绝缘性好、耐腐蚀和抗辐射等特点,在电子器件封装中得到广泛应用。陶瓷基板工艺有很多种,除了DPC、DBC、HTCC、LTCC之外,还有目前备受关注的AMB(Active Metal Bonding)技术,即活性金属钎焊技术。

AMB技术是指,在800℃左右的高温下,含有活性元素Ti、Zr的AgCu焊料在陶瓷和金属的界面润湿并反应,从而实现陶瓷与金属异质键合的一种工艺技术。AMB陶瓷基板,一般是这样制作的:首先通过丝网印刷法在陶瓷板材的表面涂覆上活性金属焊料,再与无氧铜层装夹,在真空钎焊炉中进行高温焊接,然后刻蚀出图形制作电路,最后再对表面图形进行化学镀。
AMB技术是在DBC(Direct Bonding Copper,直接覆铜法)技术的基础上发展而来的。相比于传统的DBC基板,采用AMB工艺制备的陶瓷基板,不仅具有更高的热导率、更好的铜层结合力,而且还有热阻更小、可靠性更高等优势。
根据陶瓷材质的不同,目前成熟应用的AMB陶瓷基板可分为:氧化铝、氮化铝和氮化硅基板。 | 单位 | Al2O3 | AlN | Si3N4 |
密度 | g/cm3
| 3.7 | 3.3 | 3.22 |
| | | | >80 |
热膨胀系数 | ppm/℃ 20~300℃ | 6.9 | 4.7 | 2.5 |
抗弯强度 | MPa | >350 | >350 | >700 |
介电常数 | @1MHz | 9.8 | 9.0 | 8.0 |
介电损耗 | @1MHz | <0.0002 | <0.0005 | <0.001 |
击穿强度 | kV/mm | >15 | >20 | >20 |
体积电阻 | Ω.cm | >1014 | >1014 | >1014 |
弹性模量 | GPa | 330 | 320 | 320 |
相对地,氧化铝板材来源广泛、成本最低,是性价比最高的AMB陶瓷基板,工艺最为成熟。但由于氧化铝陶瓷的热导率低、散热能力有限,AMB氧化铝基板多用于功率密度不高且对可靠性没有严格要求的领域。氮化铝AMB基板具有较高的散热能力,从而更适用于一些高功率、大电流的工作环境。但是由于机械强度相对较低,氮化铝AMB覆铜基板的高低温循环冲击寿命有限,从而限制了其应用范围。氮化硅陶瓷,具有 α-Si3N4和β-Si3N4两种晶型,其中α 相为非稳定相,在高温下易转化为稳定的 β 相。高导热氮化硅陶瓷内 β 相的含量一般大于40%。凭借氮化硅陶瓷的优异特性,AMB氮化硅基板有着优异的耐高温性能、抗腐蚀性和抗氧化性。

一方面,AMB氮化硅基板具有较高的热导率(>90W/mK),厚铜层(达800µm)还具有较高热容量以及传热性。因此,对于对高可靠性、散热以及局部放电有要求的汽车、风力涡轮机、牵引系统和高压直流传动装置等来说,AMB氮化硅基板可谓其首选的基板材料。另一方面,活性金属钎焊技术,可将非常厚的铜金属(厚度可达0.8mm)焊接到相对较薄的氮化硅陶瓷上。因此,载流能力较高,而且传热性也非常好。客户可自定义产品布局,这一点类似于PCB电路板。
氮化硅陶瓷的热膨胀系数(2.4 ppm/K)较小,与硅芯片(4 ppm/K)接近,具有良好的热匹配性。因此,AMB氮化硅基板,非常适用于裸芯片的可靠封装,封装后的组件不容易在产品的生命周期中失效。
在设计新的电源模块时,根据封装方式的要求,模块工程师需要选择合适的基板材料,并对基板的电气、热性能、机械性能和可靠性进行综合考量。研究表明,功率器件失效的绝大部分原因与热量没有及时散出有关,陶瓷基板的热学性能对于功率器件的可靠性十分关键。AMB基板的可靠性很大程度上取决于活性钎料成分、钎焊工艺、钎焊层组织结构等诸多关键因素。4.1 影响AMB陶瓷基板可靠性指标的制程因素和测试因素
4.2 影响AMB陶瓷基板机械应力和热冲击分析方面分析- dimple可起到热应力缓解作用,可以10x提升基板的可靠性
与DBC陶瓷基板相比,AMB陶瓷基板具有更高的结合强度和冷热循环特性。目前,随着电力电子技术的高速发展,高铁上的大功率器件控制模块对IGBT模块封装的关键材料——陶瓷覆铜板形成巨大需求,尤其是AMB基板逐渐成为主流应用。日本京瓷采用活性金属焊接工艺制备出了氮化硅陶瓷覆铜基板,其耐温度循环(-40~125 ℃)达到5 000 次,可承载大于300 A 的电流,已用于电动汽车、航空航天等领域。特别是,该产品采用活性金属焊接工艺将多层无氧铜与氮化硅陶瓷键合,同时采用铜柱焊接实现垂直互联,对IGBT 模块小型化、高可靠性等要求有较好的促进作用。另外,在风能、太阳能、热泵、水电、生物质能、绿色建筑、新能源装备、电动汽车、轨道交通等重要领域,AMB基板也开始得到越来越多的应用。